
 | | June 20161CIOReview
Andrea Wallack,
CEO

CIOREVIEW.COM

CIOReview
T h e N a v i g a t o r f o r E n t e r p r i s e S o l u t i o n s

JUNE 10, 2016

LEGAL TECHNOLOGY SPECIAL

NightOwl Discovery:
Continuous Innovation

Takes Top Priority

Scott M. Wornow,
SVP, Chief Legal Officer &
Corporate Secretary,
Atmel Corporation

IN MY OPINION

Vic Peterson,
CIO,
Stinson Leonard Street

CIO INSIGHTS

Stephanie Maw Booher,
Director-E-Discovery Services,
Keating Muething & Klekamp

CXO INSIGHTS

 | | June 201642CIOReview

C
ompanies today are faced with
ever-increasing pressure to
innovate; quickly. For most, it
is a function of market reality–

the company is being asked to do more,
with fewer engineers, and in less time.
If the software is old, outdated, or it
has been more than a year since the last
major release with new “killer” features,
customers may perceive your company
as behind the times. As a result, many
companies resort to the use of Open
Source Software (OSS), usually under an
Apache or GNU General Public License,
for parts of their software offering. On
the surface, this makes sense. Why
should a company expend its valuable
resources to reinvent the
wheel when it can
just leverage what
somebody else has
done for free?

Relying on OSS
saves time and money
but can lead to unin-
tended and highly con-
sequential results. For
instance, OSS may com-
promise security. It is
widely believed that OSS
is more secure than pro-
prietary software. Some
believe that many program-
mers, from a wide variety of
disciplines, review the source
code and test the application.
At least one will catch all of
the software bugs and security
flaws, right?

As the Heartbleed bug of 2014
should have shown us, this does not

really happen in practice. Heartbleed is
widely considered to be one of the biggest
failures to date. Heartbleed effected
an application called OpenSSL, which
was used to encrypt the information
for hundreds of millions of websites. A
bug permitted invalid input (remember,
hackers don’t think in terms of valid
inputs –they think in terms of invalid
inputs) to cause a website to dump all of
the information left around in its buffer.
That information could include anything
that was left lying around – account
numbers, passwords, social security
numbers, etc.

Nobody caught it because software
engineers, under the pressure of short

schedules and to get the latest and
greatest gadget out, were fooled into
believing that because OSS can be
more secure, it is infused with the
magic security pixie dust such that it is
more secure.

Why did Heartbleed fail? One
reason, while OSS may have more
eyeballs on it, it suffers from inconsistent
coding methodology.

While a company may (and if not,
should) have some standard coding
guidelines and conduct design reviews
to ensure those guidelines are consis-
tently followed for production code,
OSS has none of that. While some of
it may be great, particularly the code

designed by a group of
developers who col-
laborate closely with
similar well thought
out and reproducible
design methodolo-
gies, not all OSS is
like that. One security
developer at FreeBSD
(an Open Source
group) noted, “OpenS-
SL… sucks. The code
is a mess, the documen-
tation is misleading,

and the defaults are de-
ceptive. Plus, its 300,000

lines of code that suffers
from just about every soft-

ware engineering ailment
you can imagine.” In other

words, the poor design process
made this incredibly commonly

used code a train wreck that costs
somewhere around $500M.

By Aaron Tantleff, Partner, Foley & Lardner LLP ,
Jason White, CAO & General Counsel, Toshiba America Business Solutions

Staying Secure with Open Source

 | | June 201643CIOReview

In addition to the lack of structured
code in some OSS, there is a hidden danger
for companies using OSS in their products.
Because OSS is designed, developed,
and ultimately maintained on a volunteer
basis, it may become orphaned, without
any individual or group of individuals to
maintain it. Who can blame them?

Eventually even the best of us has to
make a living and sometimes life gets in the
way and there is no time for such volunteer
work. Like the new security vulnerabilities
are found all the time in proprietary code
(Microsoft is famous for “patch Tuesday”),
those vulnerabilities may also be found
in OSS code. When it is, and the OSS is
orphaned, the vulnerability may be around
for years afterwards. Verizon’s 2015 Data
Breach Report reported that 97 percent of
all exploited vulnerabilities were a result
of just 10 vulnerabilities published in
Mitre’s Common Vulnerability Exploits
(CVE). Eight of these 10 had been known
and publicized for more than five years.
In fact, since 2013, the CVE database
has experienced a huge spike in known
vulnerabilities for common libraries such
as Open SSL. The older the code, the more
likely it is that there is a CVE that affects it.

While not all unfixed vulnerabilities
can be attributed to OSS, the chances of
a bug not being fixed in orphaned OSS
code are significantly higher than it may
be for proprietary code where a company’s
reputation may be on the line.

The U.S. Department of Homeland
Security estimates that 90 percent of a
typical application is comprised of OSS
components, and as much as 71 percent
of applications have a critical or severe
vulnerability in their OSS components.
Take, for example, the IoT market. As
new devices come out, old models lose
their support as the company moves
their engineers over to develop next
year’s product.

So what is a technology company to
do? It is doubtful they will stop using OSS,
and it would put them at a competitive
disadvantage to do so. The best solution
may lie in the old adage “trust, but verify.”
It’s fine to use OSS, but a company
shouldn’t believe that it is without bugs
or security vulnerabilities because it is
OSS. Instead, companies should test the
package, and their overall product, for
security vulnerabilities.

At a minimum, the company’s
software test engineers should be testing
against CVE’s with a score of seven
or higher, and maybe even 4 or higher.

(Heartbleed itself was originally scored
as a five, but the scoring system has been
revised to place it significantly higher.)
The company should also be vigilant
during code reviews for evidence of
issues identified in the CWE/SANS Top
25 Most Dangerous Software Errors
database, the sister security issue list to
the CVE database and publicized from
Mitre. There is a multitude of commercial
tools to analyze source code for security
vulnerabilities, including the CWE/
SANS Top 25 Most Dangerous Software
Errors. Which begs the question, which
tests the commercial security tools for
security issues?

Through such vigilance, and a
healthy skepticism about the use of
OSS, companies can continue to reap the
efficiencies of OSS. Homeland Security
estimates that if only 50 percent of
software vulnerabilities were addressed
prior to production, costs could be
reduced by 75 percent. Plus, there is a
side benefit to verifying code before
production - minimizing the chances
of becoming the latest security issue
on the front page news. Thanks Steven
Millendorf at Foley & Lardner LLP for
all his assistance with this article.

The best
solution may
lie in the old
adage “trust,
but verify”

Aaron Tantleff

Jason White

